Fisheries and Oceans	Pêches et Océans Canada
CERT	

CERT
TRAC
Comité d'évaluation des
Transboundary Resources
Assessment Committee
permission of the authors

Estimation of the Intrinsic Rate of Increase for Georges Bank Yellowtail Flounder

Loretta O'Brien and David McElroy
NEFSC, Woods Hole, Ma

TRAC Georges Bank Yellowtail Flounder Diagnostic Benchmark
April 14-18, 2014
Woods Hole, Ma

Introduction

- Estimate reproductive potential of GB yellowtail flounder using life-table analysis.
- Methodology based on the Euler-Lotka equation (Caswell 1989)
- Apply recently derived GB YT fecundity relationship that includes condition (WP 33)
- Analysis provides :
- Intrinsic rate of increase $\rightarrow r$ and instantaneous growth rate $\lambda=\exp (r)$
\bullet-Net Reproductive rate / reproductive potential \rightarrow Ro

Input Data:

- Time series : 1973-2013
- Population number at age (N); (2013 VPA ,Legault 2013)
- Recruitment (R) = age 1 N
- Sex ratio (X); assume 50/50
- Maturity at age (M); times series average (2013 VPA ,Legault 2013)
- Mean length at age $=L_{a}$
-Use NEFSC spring research bottom trawl survey: Closest to spawning time
- Missing mean length for age 1 for most years, used a 10 year mean for missing years
- Some missing age 6 or 7 , use average of adjacent years
- Regression fit to observed mean length, fitted mean length applied in life-table

Input Data:

-Condition

- Individual weight only available since 1992.
- Fulton's Condition at length $(\mathrm{I})=\mathrm{K}_{\mathrm{I}}=\left[\mathrm{Wt}(\mathrm{g}) /\right.$ Length $\left.(\mathrm{mm})^{3}\right] * 100000$
- K assumed = 1 for earlier years
- Mean K at age $=K_{a}=\Sigma\left(K_{1} / n\right)$
- Potential Annual Fecundity (F) : combined 2010-2013 (WP 33 McElroy)
$\cdot \operatorname{Ln}(P A F)_{a}=\beta_{0}+\beta_{1} \ln L_{a}(\mathrm{~mm})+\beta_{2}$ Oocyte diam $+\beta_{3} K_{a}$
- oocyte diameter $=450$ um (near spawning size)

Parameter	Estimate	SE
Intercept	-3.3816805	2.7745847
LN (TL)	2.6875112	0.4542765
Mean Oocyte Diameter	-0.0023884	0.0005946
K	2.8512876	0.2466295

- Total Egg production at age $=\operatorname{TEP}_{\mathrm{a}}=\mathrm{N}_{\mathrm{a}}{ }^{*} \mathrm{X}_{\mathrm{a}}{ }^{*} \mathrm{M}_{\mathrm{a}}{ }^{*} \mathrm{~F}_{\mathrm{a}}$
-Recruitment survival $=S=R_{y-1} /$ TEP $_{y}$
- Average Rct Z $=\left(\Sigma-\ln [R / T E P]_{y}\right) / n$
-Maximum age ~ 11

Population Numbers at ages 1-6+ from 1973-2013

Georges Bank Yellowtail Flounder

GB YT NEFSC Spring - Observed Mean Length

Spring
Observed
Mean length at age 1973-2013

Fulton's Condition

Life-Table Analysis

Euler-Lotka equation ; solve to estimate r, intrinsic rate of increase

$$
\Sigma \underset{x=\alpha}{\mathbf{e}^{\mathrm{x}=\beta}} \mathrm{l}(\mathbf{x}) \mathrm{m}(\mathbf{x})=\mathbf{1}
$$

where
$I(x)=$ the probability of surviving to age x
$m(x)=$ number of female offspring produced at age x
$\alpha \quad=$ age 0
β = maximum age

Derive annual instantaneous growth rate :

- $\lambda=\exp (r)$

Life-Table Analysis

Derive Net reproductive rate:

$$
\begin{gathered}
x=\beta \\
R_{0}=\sum_{x}=\alpha \quad l(x) m(x)
\end{gathered}
$$

where
$I(x)=$ the probability of surviving to age x
$m(x)=$ number of female offspring produced at age x
$\alpha \quad$ = age at maturity
β = age at death

Results

annual instantaneous growth rate : $\lambda=\exp (r)$

Results - influence of K on r

Results - influence of K on Ro

K has strong effect on trend in Ro
$\mathrm{K}=1$ in fecundity eqn from 1973-1991 $\mathrm{K}=$ observed condition from $1992 \rightarrow$

Summary

- Population growth (λ) and net reproduction (Ro) have been declining since 1998
- Estimation of r and Ro influenced strongly by inclusion of condition in fecundity estimation
- If condition is not included, would mistakenly conclude stock is relatively stable even though population numbers are declining.

Further work:

- Sensitivities to varied sex ratio, since YT have dimorphic growth; Females grow/survive to larger size than males
- Sensitivity and Elasticity (proportional effect) to measure how changes in vital rates i.e. juvenile mortality, survival at age, effect estimation of λ
- Projections of Spawning Stock Biomass (Monte Carlo Analysis)

Literature Cited

Caswell, H. 1989. Matrix Population Models. Construction, Analysis, and Interpretation. Sinauer Assoicates, Inc. Sunderland , Ma. 328 p.

Hood, G. M. (2011) PopTools version 3.2.5. URL http://www.poptools.org

McElroy, W.D., E.T. Towle, M.J. Wuenschel, and R.S. McBride. 2013. Spatial and annual variation in fecundity of yellowtail flounder in U.S. waters. TRAC GBYT Benchmark WP33

Legault, C. 2013. Stock Assessment of Georges Bank Yellowtail Flounder for 2013. TRAC 2013 WP . 138 p.

